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Abstract. We present a cup product formula on the Hochschild cohomology of a family
of quiver algebras. We use the formula to determine the set of homogeneous non-nilpotent
Hochschild cocycles and construct a canonical isomorphism between Hochschild cohomol-
ogy modulo nilpotents and a subalgebra of k[x, y] that is not finitely generated. For some
members of the family, we present the Gerstenhaber ideal of homogeneous nilpotent co-
cycles using homotopy lifting technique. We then determine their Hochschild cohomology
modulo the weak Gerstenhaber ideal generated by nilpotent elements, thereby providing
an answer to a question of Reiner Hermann.

1. Introduction

The theory of support varieties has been well developed for finite groups using group
cohomology. Several efforts were made to develop similar theories for finitely generated
modules over finite dimensional algebras using Hochschild cohomology. Hochschild coho-
mology HH∗(Λ) of a k-algebra Λ is graded commutative. If the characteristics of the field
k is different from 2, then every homogeneous element of odd degree is nilpotent. Let
N be the set of nilpotent elements of HH∗(Λ), Hochschild cohomology modulo nilpotents
HH∗(Λ)/N is therefore a commutative k-algebra. For some finite dimensional algebras,
it is well known that the Hochschild cohomology ring modulo nilpotents is finitely gen-
erated as an algebra. N. Snashall described many classes of such algebras in [10, section
3]. Before the expository paper [10], it was conjectured in [11] that Hochschild cohomol-
ogy modulo nilpotents is always finitely generated as an algebra for finite dimensional
algebras. The first counterexample to this conjecture appeared in [14] where F. Xu used
certain techniques in category theory to construct a seven-dimensional category algebra
whose Hochschild cohomology ring modulo nilpotents is not finitely generated. Some au-
thors have presented several constructions of different counterexamples to this conjecture.
While it is of great use to produce a counterexample, it is equally important to understand
the cohomology ring structure of these algebras. We give a brief summary of a variation
of the F. Xu counterexample which was presented in [10]. Throughout, k is taken to be
an algebraically closed field.

A quiver is a directed graph where loops and multiple arrows (also called paths) between
two vertices are possible. The path algebra kQ, is the k-vector space generated by all paths
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in the quiver Q. By taking multiplication of two paths x and y to be the concatenation
xy if the terminal vertex t(x) of x and the origin vertex o(y) of y are equal, and otherwise
0, kQ becomes an associative k-algebra. Let I be an ideal of kQ. The quotient Λ = kQ/I
is called a quiver algebra. Consider the quiver Q:

1 2

b

a

c

and let

(1.1)
{

Λq = kQ/Iq
}
q∈k, Iq = 〈a2, b2, ab− qba, ac〉,

be the family of quiver algebras generated by Q for each q ∈ k. We give the following
remarks to summarize some of what has been done with respect to this family.

Remark 1.2. From [7, 10], we have that for each q,

• Λq is finitely generated since Q is a finite quiver i.e. has finite vertices and arrows.
• Λq is a graded Koszul quiver algebra.

• Let Λq = ⊕i≥0(Λq)i be a grading. The Koszul dual Λ!
q of Λq and the Yoneda algebra

E(Λq) are related by the following equation;

(1.3) E(Λq) = Ext∗Λq
((Λq)0, (Λq)0) ∼= Λ!

q = kQop/I⊥q

where Qop is the quiver with opposite arrows, I⊥q := 〈aob0 + q−1b0a0, b0c0〉, with v0

the correponding arrow in the opposite quiver algebra kQop for any v ∈ kQ. Note
also that Λ!

q is generated in degrees 0 and 1.
• The case where q = ±1, Iq belongs to a class of (anti-)commutative ideals studied

by E. Gawell and Q.R. Xantcha. There is an associated generator graph (of the
orthogonal ideal I⊥q of Iq) which has no directed cycles. This means that the ideal
Iq is admissible [4].
• For q = 1, the graded center of the Yoneda algebra Zgr(E(Λq)) is given by the

following

Zgr(E(Λ1)) =

{
k ⊕ k[a, b]b, if char(k) = 2

k ⊕ k[a2, b2]b2, if char(k) 6= 2

where the degree of b is 1, and that of ab is 2.

The following result shows that Λ1 is a counterexample to the Snashall-Solberg finite
generation conjecture.

Theorem. [10, Theorem 4.5] Let k be a field and Λ1 be a member of quiver algebras given
in Equation (1.1). Let N be the set of nilpotent elements of HH∗(Λ1), then

HH∗(Λ1)/N ∼= Zgr(E(Λ1)) =

{
k ⊕ k[a, b]b, if char(k) = 2

k ⊕ k[a2, b2]b2, if char(k) 6= 2

where the degree of b is 1, and that of ab is 2.
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Let A and B be k-algebras, Ae, Be their enveloping algebra and Mod(Ae) the category
of Ae-modules. It is natural to ask when an exact functor Mod(Ae) −→ Mod(Be) gives
rise to a graded homomorphism HH∗(A) −→ HH∗(B) between the Hochschild cohomology
of A and B. A recollement of module categories can be thought of as an “exact sequence”
of categories with maps between them being adjunct functors. R. Hermann in [6] showed
that recollements of module categories give rise to homomorphisms between the associated
Hochschild cohomology algebras preserving the strict Gerstenhaber structure. This led to a
formulation of another variation of the Snashall-Solberg finite generation conjecture which
asks whether Hochschild cohomology modulo the weak Gerstenhaber ideal generated by
homogeneous nilpotent elements is finitely generated. In particular, it is unknown whether
or not HH∗(Λq)/G(N ) is finitely generated when q = 1.

Our result: In this paper, we study the Hochschild cohomology ring of the family Λq of
quiver algebras of Equation (1.1). We present a comultiplicative map on a projective res-
olution K for this family and determine a cup product formula using the comultiplicative
map. With the generalized cup product formula, we completely determine homogeneous
nilpotent and non-nilpotent Hochschild cocycles. Our description and calculations agrees
with the general notion that all cocycles of odd homological degrees are nilpotent.

Furthermore, we show that whenever q = ±1, Hochschild cohomology modulo the ideal
generated by homogeneous nilpotent elements is not finitely generated. We use the idea of
homotopy lifting introduced by Y. Volkov in [12] to completely determine the Gerstenhaber
ideal generated by both homogeneous nilpotent and non-nilpotent cocycles. We show that
for Λq, q = ±1, Hochschild cohomology ring modulo the weak Gerstenhaber ideal generated
by homogeneous nilpotent cocycles is not finitely generated. Some of our results include
the following;

Theorem. Let φ : Km → Λq, and µ : Kn → Λq, be two Hochschild cocycles. Let {εmj }
m+1
j=0

be free basis elements of Km such that φ(εmj ) = φmj ∈ Λq and let {εni }
n+1
i=0 be free basis

elements of Kn such that µ(εni ) = µni ∈ Λq . Then the following gives a formula for the
cup product on Hochschild cohomology;

(φ ` µ)(εm+n
r ) = (φµ)m+n

r =


(−1)mnφm0 µ

n
0 , when r = 0,

(−1)mnTm+n
r when 0 < r < m+ n,

(−1)mnφmmµ
n
n, when r = m+ n,

(−1)mnφm0 µ
n
n+1, when r = m+ n+ 1,

where Tm+n
r =

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φmj µnr−j , 0 < r < m+ n.

Theorem. Let k be a field of characteristics different from 2. Let Λq = kQ/Iq be the
family of quiver algebras of (1.1) and N the set of homogeneous nilpotent elements of
HH∗(Λq), then

HH∗(Λq)/N =

{
HH0(Λq)/N ∼= k, if q 6= ±1

Z0(Λq,Λq)⊕ k[x2, y2]y2 ∼= k ⊕ k[x2, y2]y2, if q = ±1
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where the degree of y2 is 2, and that of x2y2 is 4.

Theorem. Let k be a field and Λq, q = ±1 be members of the family of quiver algebras
of (1.1). Let N be the set of homogeneous nilpotent elements of HH∗(Λq), and G(N ) the
weak Gerstenhaber ideal generated by N . Then HH∗(Λq)/G(N ) ∼= HH∗(Λq)/N .

2. Minimal projective resolution for Koszul quiver algebras

We recall that a quiver is a directed graph with the allowance of loops and multiple
arrows. A quiver Q is sometimes denoted as a quadruple (Q0, Q1, o, t) where Q0 is the set
of vertices in Q, Q1 is the set of arrows in Q, and o, t : Q1 −→ Q0 are maps which assign
to each arrow a ∈ Q1, its origin vertex o(a) and terminal vertex t(a) in Q0. A path in
Q is a sequence of arrows a = a1a2 · · · an−1an such that the terminal vertex of ai is the
same as the origin vertex of ai+1, using the convention of concatenating paths from left to
right. The path algebra kQ is defined as a vector space having all paths in Q as a basis.
Vertices are regarded as paths of length 0, an arrow is a path of length 1, and so on. We
take multiplication on kQ as concatenation of paths. Two paths a and b satisfy ab = 0 if
t(a) 6= o(b). This multiplication defines an associative algebra over k. By taking kQi to be
the k-vector subspace of kQ with paths of length i as basis, kQ =

⊕
i≥0 kQi can be viewed

as an N-graded algebra. A relation on a quiver Q is a linear combination of paths from Q
each having the same origin and terminal vertex. A quiver together with a set of relations
is called a quiver with relations. Let I be an ideal of kQ generated by some relations. The
quotient Λ = kQ/I is called the quiver algebra associated with (Q, I).

We now present a construction of the resolution K that we use later to determine
Hochschild cohomology.

Construction of the minimal projective resolution K: Let Λ = kQ/I be a graded
Koszul algebra. Then Λ0 has a graded (minimal) projective resolution L as a right Λ-
module. An algorithmic approach to find such a minimal projective resoluton L → Λ0 of
right Λ-modules was given in [3]. The resolution was shown to have a “comultiplicative
structure” and this structure was used to find a minimal projective resolution K → Λ of
modules over the enveloping algebra of Λ in [5]. We now describe these resolutions.

Take J to be the ideal of kQ generated by all arrows and suppose further that I ⊆ J2

is an admissible ideal, that is, Jm ⊆ I ⊆ J2 for some m and set r = J/I. A non-zero
element x ∈ kQ is called uniform if there exist vertices u, v such that x = uxv = ux = xv,
where u is the common origin vertex and v is the common terminal vertex of each of the
paths summing up to x. For R = kQ, it was shown that there are integers {tn}n≥0 and
uniform elements {fni }

tn
i=0 such that the minimal right projective resolution L of Λ0

∼= Λ/r,
is obtained from a filtration of R. The element fni for each i, is a path of length n. The
filtration is given by the following nested family of right ideals:

· · · ⊆
tn⊕
i=0

fni R ⊆
tn−1⊕
i=0

fn−1
i R ⊆ · · · ⊆

t1⊕
i=0

f1
i R ⊆

t0⊕
i=0

f0
i R = R,

where for each n, Ln =
⊕tn

i=0 f
n
i R/

⊕tn
i=0 f

n
i I and the differentials dL on L are induced

by the inclusions
⊕tn

i=0 f
n
i R ⊆

⊕tn−1

i=0 fn−1
i R. The existence of these inclusions imply that



CUP PRODUCT AND GERSTENHABER BRACKET 5

there are elements hn−1,n
ji in R such that

fni =

tn−1∑
j=0

fn−1
j hn−1,n

ji

for all i = 0, 1, . . . , tn and all n ≥ 1. The differentials dLn : Ln −→ Ln−1 are given by

dLn(fni ) =
(
hn−1,n

0i hn−1,n
1i · · · hn−1,n

tn−1i

)
for all n ≥ 1.

Furthermore, it was shown in [5] that with some choice of scalars, the elements {fni }
tn
i=0

satisfy a comultiplicative structure given below in (2.1). That is, for 0 ≤ i ≤ tn and some
positive integer r, there are scalars cpq(n, i, r) such that

(2.1) fni =

tr∑
p=0

tn−r∑
q=0

cpq(n, i, r)f
r
pf

n−r
q .

To set up this equation in practice, we can take {f0
i }

t0
i=0 to be the set of vertices, {f1

i }
t1
i=0 to

be the set of arrows, {f2
i }

t2
i=0 to be the generators of I, and define {fni }(n ≥ 3) recursively

in terms of fn−1
i and f1

j . The resolution L and the comultiplicative structure of Equation

(2.1) were used to construct a minimal projective resolution K → Λ of modules over the
enveloping algebra Λe = Λ ⊗ Λop. The minimal projective resolution K is given by the
following theorem.

Theorem 2.2. [5, Theorem 2.1] Let Λ = KQ/I be a Koszul algebra, and let {fni }
tn
i=0

define a minimal resolution of Λ0 as a right Λ-module. A minimal projective resolution
(K, d) of Λ over Λe is given by

Kn =

tn⊕
i=0

Λo(fni )⊗k t(fni )Λ

for n ≥ 0, where the differential dn : Kn −→ Kn−1 applied to εni = (0, . . . , 0, o(fni ) ⊗k
t(fni ), 0, . . . , 0), 0 ≤ i ≤ tn where o(fni )⊗k t(fni ) is in the i-th position is given by

(2.3) dn(εni ) =

tn−1∑
j=0

( t1∑
p=0

cp,j(n, i, 1)f1
p ε
n−1
j + (−1)n

t1∑
q=0

cj,q(n, i, n− 1)εn−1
j f1

q

)
and d0 : K0 −→ Λ is the multiplication map. In particular, Λ is a linear module over Λe.

Since each fni is a uniform element, the notations o(fni ), t(fni ) are well defined. The

scalars cp,j(n, i, r) are those appearing in Equation (2.1) and f1
∗ , which by abuse of notation

has been written as f1
∗ in Equation (2.3), is the residue class of f1

∗ in
⊕t1

i=0 f
1
i R/

⊕tn
i=0 f

1
i I.

We define Hochschild cohomology using this resolution. That is, we apply the functor
HomΛe(·,Λ) to the resolution K and take a direct sum of the cohomology groups in each
degree:

HH∗(Λ) :=
⊕
n≥0

Hn(HomΛe(Kn,Λ))
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Using the comultiplicative structure of Equation (2.1), it was shown in [2] that the cup
product on the Hochschild cohomology ring of a Koszul algebra defined by a quiver and
relations has the following description:

Theorem 2.4 (See [2], Theorem 2.3). Let Λ = kQ/I be a Koszul algebra over a field k,
where Q is a finite quiver and I ⊆ J2. Suppose that η : Kn → Λ and θ : Km → Λ represent
elements in HH∗(Λ) and are given by η(εni ) = λi for i = 0, 1, . . . , tn and θ(εmi ) = λ′i for
i = 0, 1, . . . , tm. Then η ^ θ : Kn+m → Λ can be expressed as

(η ^ θ)(εn+m
j ) =

tn∑
p=0

tm∑
q=0

cpq(n+m, i, n)λpλ
′
q,

for j = 0, 1, 2, . . . , tn+m.

The reduced bar resolution of Λ = kQ/I as presented in [2, Section 1]: We recall
the definition of the reduced bar resolution of algebras defined by quivers and relations. If
Λ0 is isomorphic to m copies of k, take {e1, e2, . . . , em} to be a complete set of primitive
orthogonal central idempotents of Λ0. In this case Λ is not necessarily an algebra over
Λ0. Define the reduced bar resolution (B, δ) to be Bn = Λ⊗Λ0

(n+2), the (n+ 2)-fold tensor
product of Λ over Λ0 with differentials δ given by:

(2.5) δn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.

If Λ0
∼= k, then B = B, the usual bar resolution, as Λ is an algebra over Λ0. The resolution

K can be embedded naturally into the reduced bar resolution B. There is a map ι : K→ B
defined by ι(εnr ) = 1⊗ f̃nr ⊗ 1 such that δι = ιd, with

(2.6) f̃nj =
∑

cj1j2···jnf
1
j1 ⊗ f

1
j2 ⊗ · · · ⊗ f

1
jn if fnj =

∑
cj1j2···jnf

1
j1f

1
j2 · · · f

1
jn

for some scalar cj1j2···jn . See [2, Proposition 2.1] for a proof that ι is indeed an embedding.
Let ∆ : B → B ⊗Λ B be a comultiplicative map (also called the diagonal map) on the bar
resolution given explicitly by Equation (3.6). It was also shown in [2, Proposition 2.2] that
there is a comultiplicative map ∆K : K → K ⊗Λ K on the complex K compatible with ι.
This means that (ι ⊗ ι)∆K = ∆ι where (ι ⊗ ι)(K ⊗Λ K) = ι(K) ⊗Λ ι(K) ⊆ B ⊗Λ B. The
comultiplicative map on K is given in general by

(2.7) ∆K(εnr ) =

n∑
v=0

tv∑
p=0

tn−v∑
q=0

cp,q(n, r, v)εvp ⊗Λ ε
n−v
q .

We present a specific comultiplicative map for the family {Λq}q∈k under study in Remark
3.9 and use it to determine the structure of Hochschild cohomology of this family. Fur-
thermore, there are recent techniques such as [12] for computing the bracket structure on
Hochschild cohomology which relies on comultiplicative maps such as this.

3. Cup product structure

In this section, we will study the Hochschild cohomology of the family of quiver algebras
of Equation (1.1) i.e.

{Λq =
kQ

Iq
}, Iq = 〈a2, b2, ab− qba, ac〉.
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and present the cup product structure on their Hochschild cohomology. For this fam-
ily, the resolution K → Λq has free basis elements {εni }

tn
i=0 such that for each n, εni =

(0, . . . , 0, o(fni ) ⊗k t(fni ), 0, . . . , 0). To concretely define the free basis εni for each mod-
ule Kn, we start by using kQ0, the subspace of kQ generated by the vertices of Q with
basis {e1, e2}. We define {f0

0 = e1, f
0
1 = e2}. Next, since kQ1 is the subspace generated

by paths of length 1 with free basis {a, b, c}, we define {f1
0 = a, f1

1 = b, f1
2 = c}. We

let f2
j , j = 0, 1, 2, 3 to be the set of paths of length 2 generated by the ideal I, that is,

{f2
0 = a2, f2

1 = ab − qba, f2
2 = b2, f2

3 = ac}. We continue in this way and define for each
n > 2,

(3.1)


fn0 = an,

fns = fn−1
s−1 b+ (−q)sfn−1

s a, (0 < s < n),

fnn = bn,

fnn+1 = a(n−1)c.

We recall that each fni is a uniform relation therefore the origin vertex o(fni ) and the
terminal vertex t(fni ) exist. Therefore the notation o(fni ) ⊗k t(fni ) in the definition of εni
makes sense. The differentials on Kn are given explicitly for this family by

d1(ε1
2) = cε0

1 − ε0
0c

dn(εnr ) = (1− ∂n,r)[aεn−1
r + (−1)n−rqrεn−1

r a]

+ (1− ∂r,0)[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b], for r ≤ n
dn(εnn+1) = aεn−1

n + (−1)nεn−1
0 c, when n ≥ 2,(3.2)

where ∂r,s = 1 when r = s and 0 when r 6= s. We give below, a proof that the differentials
satisfy d2 = 0. For a general proof that the resolution we obtain using these descriptions
and its general form presented in Theorem (2.2) is a minimal projective resolution, see [5,
Theorem 2.1].

A proof that d2 = 0.

Proof.

d0d1((ε1
2) = µd1((ε1

2) = µ(cε0
1 − ε0

0c) = µ(c(e2 ⊗ e2)− (e1 ⊗ e1)c)

= µ(c⊗ e2 − e1 ⊗ c) = ce2 − e1c = c− c = 0.

Now for r ≤ n, we set ∂̄n,r = (1− ∂n,r), so that

dn(εnr ) = ∂̄n,r[aε
n−1
r ) + (−1)n−rqrεn−1

r a] + ∂̄r,0[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b].

Now we apply the differential again: so dn−1dn(εnr ) is equal to

dn−1

{
∂̄n,r[aε

n−1
r + (−1)n−rqrεn−1

r a] + ∂̄r,0[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b]
}

= ∂̄n,r[adn−1(εn−1
r ) + (−1)n−rqrdn−1(εn−1

r )a] + ∂̄r,0[(−q)n−rbdn−1(εn−1
r−1 )

+ (−1)ndn−1(εn−1)r−1b],
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which becomes

∂̄n,ra
{
∂̄n−1,r[aε

n−2
r + (−1)n−r−1qrεn−2

r a] + ∂̄r,0[(−q)n−r−1bεn−2
r−1 + (−1)n−1εn−2

r−1 b]
}

+ (−1)n−rqr∂̄n,r
{
∂̄n−1,r[aε

n−2
r + (−1)n−r−1qrεn−2

r a]

+ ∂̄r,0[(−q)n−r−1bεn−2
r−1 + (−1)n−1εn−2

r−1 b]
}
a

+ (−q)n−r∂̄r,0b
{
∂̄n−1,r−1[aεn−2

r−1 + (−1)n−rqr−1εn−2
r−1a]

+ ∂̄r−1,0[(−q)n−rbεn−2
r−2 + (−1)n−1εn−2

r−2 b]
}

+ (−1)n∂̄r,0
{
∂̄n−1,r−1[aεn−2

r−1 + (−1)n−rqr−1εn−2
r−1a]

+ ∂̄r−1,0[(−q)n−rbεn−2
r−2 + (−1)n−1εn−2

r−2 b]
}
b

= ∂̄n,r∂̄n−1,ra
2εn−2
r + (−1)2(n−r)−1q2r∂̄n,r∂̄n−1,rε

n−2
r a2

+ (−q)2(n−r)∂̄r,0∂̄r−1,0b
2εn−2
r−2 + (−1)2n−1∂̄r,0∂̄r−1,0ε

n−2
r−2 b

2

+ [(−1)−1 + 1](−1)n−rqr∂̄n,r∂̄n−1,raε
n−2
r a+ [(−1)−1 + 1](−1)n(−q)n−r∂̄r,0∂̄r−1,0bε

n−2
r−2 b

+ [−∂̄n,r + ∂̄n−1,r−1](−1)2(n−r)qn−1∂̄r,0bε
n−2
r−1a+ [−∂̄n,r + ∂̄n−1,r−1]∂̄r,0aε

n−2
r−1 b

+ (−q)n−2∂̄r,0[∂̄n,rab− ∂̄n−1,r−1qba]εn−2
r−1 + (−1)2n−r(−q)r−1∂̄r,0ε

n−2
r−1 [∂̄n,r − qba+ ∂̄n−1,r−1ab]

= 0.

In the last equality, we have used the fact that a2 = b2 = 0, ∂̄n,r and ∂̄n−1,r−1 have the
same sign, implying that ∂̄n,rab− ∂̄n−1,r−1qba = ab−qba = 0 and ∂̄n,r−qba+ ∂̄n−1,r−1ab =
−qba+ ab = 0. Lastly we have

dn−1dn(εnn+1) = dn−1[aεn−1
n + (−1)nεn−1

0 c]

= a[aεn−2
n−1 + (−1)n−1εn−2

0 c] + (−1)n[aεn−2
0 + (−1)n−1εn−2

0 a]c

and after eliminating terms with coefficients a2 = ac = 0, we get

dn−1dn(εnn+1) = (−1)n−1aεn−2
0 c+ (−1)naεn−2

0 c = [(−1)−1 + 1](−1)naεn−2
0 c = 0.

�

Recall that the resolution K can be embedded into the reduced bar resolution B via ι.
The embedding map ι : Kn → Bn is defined by εnr 7→ 1⊗ f̃nr ⊗ 1, where each f̃nr is viewed
as a sum of tensor products of paths of length 1 as given in Equation (2.6). For example,

for the family (1.1), f̃2
0 = f1

0 ⊗ f1
0 = a⊗ a, f̃2

1 = f1
0 ⊗ f1

1 − qf1
1 ⊗ f1

0 = a⊗ b− qb⊗ a. It is
clear from Equation (3.1) that the following holds;
(3.3)

f̃ns =


f1

0 ⊗ f1
0 ⊗ · · · ⊗ f1

0 , (n times) when s = 0,

f̃n−1
s−1 ⊗ f1

1 + (−q)sf̃n−1
s ⊗ f1

0 , when (0 < s < n),

f1
1 ⊗ f1

1 ⊗ · · · ⊗ f1
1 , (n times) when s = n,

f1
0 ⊗ f1

0 ⊗ · · · ⊗ f1
0 ⊗ f1

2 , (f1
0 appears (n− 1) times), when s = n+ 1,



CUP PRODUCT AND GERSTENHABER BRACKET 9

In case 0 < s < n, it was shown in [1] that

fns =
∑min{t,s}

j=max{0,r+t−n}(−q)
j(n−s+j−t)f tjf

n−t
s−j , hence,

(3.4) f̃ns =

min{t,s}∑
j=max{0,r+t−n}

(−q)j(n−s+j−t)f̃ tj ⊗ f̃
n−t
s−j .

We are now ready to present the cup product formula. We first present the following
alternate definition of the cup product.

Definition 3.5. Let A be a k-algebra. Let ∆ : B −→ B ⊗A B be the comultiplicative map
lifting the identity map on A ∼= A ⊗A A. Let f ∈ HomAe(Bm, A) ∼= Homk(A

⊗m, A) and
g ∈ Homk(A

⊗n, A) be cocycles of degree m and n respectively. The cup product f ` g at

the chain level is an element of Homk(A
⊗(m+n), A) given by

f ` g = π(f ⊗ g)∆,

where π is multiplication, and ∆ is given by

(3.6) ∆(a0 ⊗ · · · ⊗ an+1) =
n∑
i=0

(a0 ⊗ · · · ⊗ ai ⊗ 1)⊗A (1⊗ ai+1 ⊗ · · · ⊗ an+1).

For homogeneous elements a, b of degrees m and n respectively, the map f ⊗ g is taken
to be (f ⊗ g)(a ⊗ b) = (−1)|g||a|f(a) ⊗ g(b), where the degree of g is |g| = n. We recall
that for any member Λq of the family, if φ ∈ HomΛe

q
(Km,Λq), and η ∈ HomΛe

q
(Kn,Λq) are

two cocycles, we can use Definition 3.5 on the resolution K provided we have an explicit
presentation of the comultiplication ∆K. This definition is presented using the following
composition of maps;

φ ` η : K ∆K−→ K⊗Λq K
φ⊗η−→ Λq ⊗Λq Λq

π' Λq

where π is multiplication, (φ⊗η)(εmi ⊗εnj ) = (−1)mnφ(εmr )⊗η(εnj ), and the comultiplicative
map ∆K is such that the diagram

K K⊗Λq K

B B ⊗Λq B.

∆K

ι ι⊗ι

∆

is commutative i.e.

(3.7) (ι⊗ ι)∆K = ∆ι.

Notice that we do not distinguish between B and B when using the map ∆. We are able
to present explicit definition of ∆K in Remark 3.9 after providing a proof of Theorem 4.7
which relies on Equations (3.6) and (3.7).

Let φ : Km → Λq and η : Kn → Λq be two cocycles of homological degrees m and n
respectively. Suppose that φ takes εmi to φmi , for i = 0, 1, . . . ,m+1, and η takes εnj to ηnj , for

j = 0, 1, . . . , n+1, we use the following standard notation φ =
(
φm0 φm1 · · · φmm φmm+1

)
and η =

(
ηn0 ηn1 ηn2 · · · ηnn ηnn+1

)
. We denote the cup product of φ and η by

φ ` η :=
(
(φη)m+n

0 (φη)m+n
1 (φη)m+n

2 · · · (φη)m+n
m+n (φη)m+n

m+n+1

)
,

that is, (φ ` η)(εm+n
i ) = (φη)m+n

i , i = 0, 1, . . . ,m+ n+ 1.
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Theorem 3.8. Let φ : Km → Λq and η : Kn → Λq, be two cocycles representing two classes

in cohomology. Let {εmj }
m+1
j=0 be free basis elements of Km such that φ(εmj ) = φmj ∈ Λq and

let {εni }
n+1
i=0 be free basis elements of Kn such that η(εni ) = ηni ∈ Λq . Then the following

gives a formula for the cup product on Hochschild cohomology:

(φ ` η)(εm+n
r ) = (φη)m+n

r =


(−1)mnφm0 η

n
0 , when r = 0,

(−1)mnTm+n
r when 0 < r < m+ n,

(−1)mnφmmη
n
n, when r = m+ n,

(−1)mnφm0 η
n
n+1, when r = m+ n+ 1,

where Tm+n
r =

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φmj µnr−j , 0 < r < m+ n.

Proof. We will find an explicit description of the comultiplicative map ∆K on {εm+n
r }m+n+1

r=0
for which Equation (3.7) holds. We will then use the formula (φ ` η)(εm+n

r ) = π(φ ⊗
η)∆K(εm+n

r ) as the definition of the cup product. We start with the case when r = 0, r =
m+ n, r = m+ n+ 1 and last consider the case where 0 < r < m+ n.

When r = 0, we have that

(ι⊗ ι)∆K(εm+n
0 ) = ∆ι(εm+n

0 )

= ∆(1⊗ f̃m+n
0 ⊗ 1) =

m+n times

∆(1⊗ f1
0 ⊗ f1

0 ⊗ · · · ⊗ f1
0 ⊗ 1)

=

m+n∑
s=0

(1⊗ f̃ s0 ⊗ 1)⊗ (1⊗ ˜fm+n−s
0 ⊗ 1) = (ι⊗ ι)(

m+n∑
s=0

εs0 ⊗ εm+n−s
0 ).

Notice that by the usual definition of the comultiplicative map on the bar resolution,

1⊗ f̃0
0 ⊗ 1 = 1⊗ 1. Hence ∆K(εm+n

0 ) = (
m+n∑
s=0

εs0 ⊗ εm+n−s
0 ). Since φ is a cocycle of degree

m, we can evaluate φ(εm∗ ), and in a similar way evaluate η(εn∗ ) to obtain

(φ ` η)(εm+n
0 ) = π(φ⊗ η)∆K(εm+n

0 ) = π(φ⊗ η)(
m+n∑
r=0

εr0 ⊗ εm+n−r
0 )

= π((−1)mnφ(εm0 )⊗ η(εn0 )) = (−1)mnφm0 η
n
0 .

In case r = m+ n

(ι⊗ ι)∆K(εm+n
m+n) = ∆ι(εm+n

m+n)

= ∆(1⊗ f̃m+n
m+n ⊗ 1) =

m+n times

∆(1⊗ f1
1 ⊗ f1

1 ⊗ · · · ⊗ f1
1 ⊗ 1)

=
m+n∑
s=0

(1⊗ f̃ ss ⊗ 1)⊗ (1⊗ ˜fm+n−s
m+n−s ⊗ 1) = (ι⊗ ι)(

m+n∑
s=0

εss ⊗ εm+n−s
m+n−s),



CUP PRODUCT AND GERSTENHABER BRACKET 11

so ∆K(εm+n
m+n) =

m+n∑
s=0

εss ⊗ εm+n−s
m+n−s, and

(φ ` η)(εm+n
m+n) = π((−1)mnφ(εmm)⊗ η(εnn)) = (−1)mnφmmη

n
n.

A similar result holds with r = m+ n+ 1, i.e.

(ι⊗ ι)∆K(εm+n
m+n+1) = ∆(1⊗ ˜fm+n

m+n+1 ⊗ 1) =
m+n−1 times

∆(1⊗ f1
0 ⊗ f1

0 ⊗ · · · ⊗ f1
0 ⊗ f1

2 ⊗ 1)

=
m+n−1∑
s=0

(1⊗ f̃s0 ⊗ 1)⊗ (1⊗ ˜fm+n−s
m+n−s+1 ⊗ 1) + (1⊗ f1

0 ⊗ f1
0 ⊗ · · · ⊗ f1

0 ⊗ f1
2 ⊗ 1)⊗ (1⊗ 1)

= (ι⊗ ι)(
m+n−1∑
s=0

εs0 ⊗ εm+n−s
m+n−s+1 + εm+n

m+n+1 ⊗ ε
0
0),

hence ∆K(εm+n
m+n+1) = (

m+n−1∑
s=0

εs0 ⊗ εm+n−s
m+n−s+1) + εm+n

m+n+1 ⊗ ε
0
0 . Therefore, when s = m +

n+ 1, we obtain (φ ` η)(εm+n
m+n+1) = π((−1)mnφ(εm0 )⊗ η(εnn+1)) = (−1)mnφm0 η

n
n+1. It was

shown in [1] that for 0 < r < m+ n,

fm+n
r =

min{t,r}∑
j=max{0,r+t−n−m}

(−q)j(m+n−r+j−t)f tjf
m+n−t
r−j ,

therefore ι(εm+n
r ) = 1⊗

[ min{t,r}∑
j=max{0,r+t−m−n}

(−q)j(m+n−r+j−t)f̃ tj ⊗
˜fm+n−t
r−j

]
⊗ 1, and by let-

ting t = m, the above expression becomes

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)1⊗ f̃mj ⊗ f̃nr−j ⊗ 1.

When we apply ∆ to the above expression, we obtain

(∆ι)(εm+n
r ) =

n∑
u=−m

min{m+u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(1⊗ f̃m+u
j ⊗ 1)⊗ (1⊗ f̃n−ur−j ⊗ 1)

=
n∑

u=−m

min{m−u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(ι⊗ ι)(εm+u
j ⊗ εn−ur−j )

using the relation that (ι⊗ ι)∆K = ∆ι,we obtain

(ι⊗ ι)∆K(εm+n
r ) = (ι⊗ ι)

[ n∑
u=−m

min{m−u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(εm+u
j ⊗ εn−ur−j )

]
.
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To apply π(φ⊗ η)∆K(εm+n
r ), set u = 0 to get

(φ ` η)(εm+n
r ) = (−1)mn

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φ(εmj )η(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)φmj ηnr−j

= (−1)mnTm+n
r ,

which is the result. �

Remark 3.9. By some change of variables, we can infer from all the boxed equations in the
proof of Theorem 4.7 that the explicit definition of the comultiplication ∆K : K −→ K⊗Λq K
is the following;

∆K(εns ) =



n∑
t=0

εt0 ⊗ εn−t0 , s = 0

n∑
w=0

min{w,s}∑
j=max{0,s+w−n}

(−q)j(n−s+j−w)εwj ⊗ εn−ws−j , 0 < s < n

n∑
t=0

εtt ⊗ εn−tn−t, s = n[ n∑
t=0

εt0 ⊗ εn−tn−t+1

]
+ εnn+1 ⊗ ε0

0, s = n+ 1.

where in the expansion of ∆K(εns ), 0 < s < n, the index w is such that there are no repeated
terms.

4. Hochschild cohomology modulo nilpotents not finitely generated

Let us recall from the introduction that there was an attempt to develop the theory
of support varieties for finitely generated modules of finite dimensional algebras using
Hochschild cohomology. The idea of this theory is the following:

Let A be a finite dimensional algebra. Let M,N be two A-modules and Ext∗A(M,N)
their extension group. There is an action of Hochschild cohomology on the extension
group defined as follows. Let P −→ A be a projective resolution of A. Let f ∈ HHm(A) be a
representative. We can think of f as a representative of an equivalence class ofm-extensions
of A by A that is f ∈ ExtmAe(A,A). Now define a map Φ : ExtmAe(A,A) −→ ExtmA (M,M)
taking the equivalence class of f to the equivalence class f⊗1M . For any g ∈ ExtnA(M,N),
the Yoneda product of f ⊗ 1M and g gives an element of Extm+n

A (M,N). This induces the
left action

HH∗(A)× Ext∗A(M,N) −→ Ext∗A(M,N)

defined by taking any pair (f, g) to the Yoneda product of Φ(f) and g. For some finite
dimensional algebras, it is well known that Hochschild cohomology ring modulo nilpotents
is finitely generated as an algebra. Furthermore, whenM,N are finite-dimensional modules
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and H a subalgebra of HH∗(A), define

IH(M,N) = {f ∈ H | Φ(f)g = 0, for all g ∈ Ext∗A(M,N)}
to be the annihilator of Ext∗A(M,N) in H. IH(M,N) is obviously an ideal of H.

Definition 4.1. Let M,N be finite-dimensional A-modules. The support variety of the
pair M,N is

VH(M,N) = VH(IH(M,N)) ∼= Max(H/IH(M,N))

the maximal ideal spectrum of the quotient ring H/IH(M,N). The variety of M is defined
as VH(M) = VH(M,M).

For this theory to have all the nice properties that one would like, (i) H has to be a
finitely generated algebra and (ii) Ext∗A(A/r, A/r) has to be finitely generated as an H-
module. This leads to the conjecture in [11] that Hochschild cohomology modulo nilpotents
is always finitely generated as an algebra. For instance, we can take H = HHev(A) the
subalgebra of HH∗(A) generated by homogeneous elements of even degrees.

The first counterexample to this conjecture appeared in [14] where F. Xu used certain
techniques in category theory to construct a seven-dimensional category algebra whose
Hochschild cohomology ring modulo nilpotents is not finitely generated. There are other
constructions as well e.g. see [15]. The rest of this section is devoted to identifying nilpo-
tent and non-nilpotent Hochschild cocycles for the family of quiver algebras under study
after which we determine their Hochschild cohomology modulo homogeneous nilpotent el-
ements. We start with cocycles of degree 0 and define K̂i := HomΛe(Ki,Λ).

The 0-th Hochschild cohomology (HH0(Λq) =
ker d∗1
Im 0 ).

Let φ ∈ ker d∗1 ⊆ K̂0 := HomΛe(K0,Λ), such that φ = (λ0
0 λ

0
1), for some λ0

1, λ
0
1 ∈ Λ. We

solve for the λ0
i (i = 0, 1) for which d∗1φ(ε1

i ) = 0 as follows

d∗1φ(ε1
0) = φd1(ε1

0) = φ(a(ε0
0) + (−1)1q0(ε0

0)a) = aλ0
0 − λ0

0a = 0

d∗1φ(ε1
1) = φd1(ε1

1) = φ((−q)0b(ε0
0)− (ε0

0)b) = bλ0
0 − λ0

0b = 0

d∗1φ(ε1
2) = φd1(ε1

2) = φ(c(ε0
1)− (ε0

0)c) = cλ0
1 − λ0

0c = 0

If q = 1, then ab−ba = 0, we get the following set of solutions: φ = (a 0), (ab 0),(0 a), (0 b),
(e1 e2) or (0 e1). By identifying each solution (λ0

0 λ0
1) with (o(f0

0 )λ0
0t(f

0
0 ) o(f0

1 )λ0
1t(f

0
1 )) =

(e1λ
0
0e1 e2λ

0
1e2), we need to have o(λ0

0) = t(λ0
0) = e1 and o(λ0

1) = t(λ0
1) = e2. This leads us

to eliminate some solutions in order to have the following set of solutions; φ1 = (a 0), φ2 =
(ab 0) and φ3 = (e1 e2).
If q = −1, then ab+ ba = 0, we get the solutions set: φ2 = (ab 0) and φ3 = (e1 e2).
If q 6= ±1, then ab−qba = 0, we get φ2 = (ab 0) and φ3 = (e1 e2). Therefore, the Λe-module
homomorphisms φ1, φ2, φ3 form a basis for the kernel of d∗1 as a k-vector space. We write,

ker d∗1 = spank{φ1, φ2, φ3}.
In summary we obtain,

HH0(Λq) =
ker d∗1
Im 0

=

{
spank{(a 0), (ab 0), (e1 e2)}, if q = 1

spank{(ab 0), (e1 e2)}, if q 6= 1

Notice that if the characteristics of k is 2, then q = 1 = −1, so we obtain the first case.
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Remark 4.2. We note that the Hochschild 0-cocycles φ = (a 0) and φ = (ab 0) correspond
to elements a and ab respectively. These elements are in the center of the algebra Λq. As
we will see later, these elements are nilpotent with respect to the cup product. The 0-cocycle
φ = (e1 e2) is not nilpotent, since e1 and e2 are idempotent elements. It is obvious that φ
generates HH0(Λq)/N . This brings us to make the following deduction for any q ∈ k :

(4.3) HH0(Λ)/N =
ker d∗1
Im 0

= spank{(e1 e2)} ∼= k,

since e1 + e2 = 1Λq .

We now give the following counting proposition about dim(ker d∗), the dimension of the

kernels of the differentials d∗n+1 : K̂n → K̂n+1.

Proposition 4.4. Let k be a field and let {Λq}q∈k be the family of quiver algebras of Equa-

tion (1.1). For the Hochschild cohomology ring HHn(Λ) =
kerd∗n+1

Im d∗n
, n 6= 0, the following

holds;

(4.5) dim(ker d∗n+1) =



2(n+ 2), q = 1, n is odd,
5n
2 + 4, q = 1, n is even,

2(n+ 2), q = −1, n is even,
5n
2 + 4, q = −1, n is odd,

n+ 2, q 6= ±1, n is any integer,

as a k-vector space.

Proof. Let φ ∈ ker d∗n+1, with φ =
(
φn0 φn1 · · · φnn φnn+1

)
. The elements φni =

φ(εni ), i = 0, · · · , n+ 1 are obtained by setting the following sets of equations to 0:
For any n or q

d∗n+1φ(εn+1
0 ) = aφ(εn0 ) + (−1)n+1φ(εn0 )a = aφn0 ± φn0a and

d∗n+1φ(εn+1
n+2) = aφ(εnn+1) + (−1)n+1φ(εn0 )c = aφnn+1 ± φn0c.

For this set of equations to be 0, we should have φn0 ∈ spank{a, c, ab, bc} and φnn+1 ∈
spank{a, c, ab, bc}. But we recall that φn0 ∈ e1Λqe1, and φnn+1 ∈ e1Λqe2. These constraints
make us obtain the following φn0 ∈ spank{a, ab} and φnn+1 ∈ spank{c, bc}. The rest of this
proof involves obtaining the values of φnr when you set the following equations

d∗n+1φ(εn+1
r ) = aφ(εnr ) + (−1)n+1−rqrφ(εnr )a+ (−q)n+1−rbφ(εnr−1) + (−1)n+1φ(εnr−1)b

= aφnr + (−1)n+1−rqrφnr a+ (−q)n+1−rbφnr−1 + (−1)n+1φnr−1b

d∗n+1φ(εn+1
r+1 ) = aφnr+1 + (−1)n−rqr+1φnr+1a+ (−q)n−rbφnr + (−1)n+1φnr b

equal to 0 for different values of n, r and q. We recall that q = ±1 implies ab∓ ab = 0.
When n is even, r is even, q = 1, we obtain φnr by setting φnr−1 = φnr+1 = 0. Then

solving d∗n+1φ(εn+1
r ) = aφnr − φnr a = 0 and d∗n+1φ(εn+1

r+1 ) = bφnr − φnr b = 0, we obtain
φnr ∈ spank{a, b, ab, bc, e1}. Again we recall that φnr ∈ e1Λqe1, so φnr ∈ spank{a, b, ab, e1}.
When n is even, r is odd, q = 1, we obtain φnr by setting φnr−1 = φnr+1 = 0. Then

solving d∗n+1φ(εn+1
r ) = aφnr + φnr a = 0 and d∗n+1φ(εn+1

r+1 ) = −bφnr − φnr b = 0 to obtain
φnr ∈ spank{ab, bc}. So φnr ∈ spank{ab}.
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When n is odd, r is even, q = 1, we obtain φnr by setting φnr−1 = φnr+1 = 0. Af-

ter solving d∗n+1φ(εn+1
r ) = aφnr + φnr a = 0 and d∗n+1φ(εn+1

r+1 ) = −bφnr + φnr b = 0, we get
φnr ∈ spank{a, ab, bc} and finally we get φnr ∈ spank{a, ab}.
When n is odd, r is odd, q = 1, we obtain φnr by setting φnr−1 = φnr+1 = 0. Then

solve d∗n+1φ(εn+1
r ) = aφnr − φnr a = 0 and d∗n+1φ(εn+1

r+1 ) = bφnr + φnr b = 0, to get φnr ∈
spank{ab, bc, b}. Like before we obtain φnr ∈ spank{b, ab}.
We continue in this fashion and obtain the following results as well.
When n is even, r is even, q = −1, we obtain φnr ∈ spank{ab, e1}.
When n is even, r is odd, q = −1,we obtain φnr ∈ spank{ab, b}.
When n is odd, r is even, q = −1, we obtain φnr ∈ spank{a, b, ab}.
When n is odd, r is odd, q = −1, we get φnr ∈ spank{a, ab}.
For any other q 6= ±1 and n even, r even, we obtain after solving d∗n+1φ(εn+1

r ) =

aφnr −qrφnr a = 0 and d∗n+1φ(εn+1
r+1 ) = qn−rbφnr −φnr b = 0, φnr ∈ spank{ab}. In case n is even

and r is odd or even, we obtain the same φnr ∈ spank{ab}.
The following table summarizes the set of all solutions:

q = 1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr a, b, ab, e1 ab a, ab b, ab
φnn+1 c, bc c, bc

q = −1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr ab, e1 b, ab a, b, ab a, ab
φnn+1 c, bc c, bc

q 6= ±1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr ab ab ab ab
φnn+1 c, bc c, bc

From all these tables, we make the following deductions;

(n is even and q = +1) : dim(Ker d∗n+1) = 2+(

(odd−positions)
n

2
× 1 +

(even−positions)
n

2
× 4 )+2 = 5(

n

2
)+4

(n is odd and q = +1) : dim(Ker d∗n+1) = 2+(

(odd−positions)
n

2
× 2 +

(even−positions)
n

2
× 2 )+2 = 2(n+2)

(n is even and q = −1) : dim(Ker d∗n+1) = 2+(

(odd−positions)
n

2
× 2 +

(even−positions)
n

2
× 2 )+2 = 2(n+2)

(n is odd and q = −1) : dim(Ker d∗n+1) = 2+(

(odd−positions)
n

2
× 2 +

(even−positions)
n

2
× 3 )+2 = 5(

n

2
)+4
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( for any n, q 6= ±1) : dim(Ker d∗n+1) = 2 + (

(odd−positions)
n

2
× 1 +

(even−positions)
n

2
× 1 ) + 2 = n+ 4

which is the result. �

Remark 4.6. From Proposition 4.4, note that the dimension of ker d∗n increases as n
increases. We also observe that there are Hochschild n-cocycles of the form
φ =

(
0 · · · 0 e1 0 · · · 0

)
i.e. φni = 0 for all i except at some position r. These

cocycles are denoted by φ :=
(
0 · · · 0 (e1)(r) 0 · · · 0

)
when we want to emphasize

that e1 is in the r-th position. Our next result shows that cocycles like this are non-nilpotent.
Reading from the table of solutions in Proposition 4.4 they occur whenever both n and r
are even and q = ±1. Observe that for any n, whenever r = 0 or r = n+ 1, φnr 6= e1. We
also observe that whenever q 6= ±1 all n-cocycles are nilpotent except in degree 0.

Lemma 4.7. If φ =
(
0 · · · 0 φnr 0 · · · 0

)
is any cocyle such that φnr 6= e1, then φ

is nilpotent.

Proof. We have from Theorem 3.8 that when 0 < r < m+ n,

(φ ` φ)(εm+n
r ) = (−1)mn

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φmj φnr−j(4.8)

where φmj φ
n
r−j is a product of any two elements from the set {a, b, ab, c, bc} which is equal

to 0 in the algebra except ab and bc. In general, if it is not a zero, we simply take a triple
cup product using the following;

(φ ` φ ` φ)(εn+n+n
r )

= (µ ` φ)(εm+n
r ) (take µ = φ ` φ,m = n+ n)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)µ(εmj )φ(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)[φ ` φ(εn+n
j )]φ(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)
[
(−1)n

2
min{n,l}∑

i=max{0,l−n}

(−q)i(n−l+i)φ(εni )φ(εnl−i)
]
φ(εnr−j)

= (−1)3n2
min{m,r}∑

j=max{0,r−n}

min{n,l}∑
i=max{0,l−n}

(−q)ij(n−r+j)(n−l+i)φ(εni )φ(εnl−i)φ(εnr−j).

The product φ(εni )φ(εnl−i)φ(εnr−j) = φni φ
n
l−iφ

n
r−j is always 0 in Λq by the defining relations

in Iq except when φmi = φml−i = φmr−j = e1 for some i, j, l, r. Accordingly, this is the case if
and only if q = ±1, n is even and i, l, r are even. �

We now present the following corollary to Lemma 4.7.

Corollary 4.9. Let φ : Kn → Λq, be an n-cocycle. Then φ is non-nilpotent if, and only if

q = ±1, n and r are even, r 6= 0 and φ =
(
0 · · · 0 (e1)(r) 0 · · · 0

)
.
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Proof. Follows from Lemma 4.7 and the tables of solutions in Proposition 4.4. �

Let HHn(Λq,Λq) := Hn(HomΛe
q
(Kn,Λq)) be the Hochschild cohomology class of n co-

cycles and let Zn(Λq,Λq) := HHn(Λq,Λq)/N , where N is the ideal generated by nilpotent
cocycles. For each n, representatives of classes in Zn(Λq,Λq) are those distinct elements
given by Corollary 4.9.

Furthermore, to show that each element constitutes its own class with respect to mod-
ding out by N , we do the following: For a fixed n, let φ, β be two distinct 2n-cocycles such
that φ(ε2n

r ) = φ2n
r = e1, β(ε2n

s ) = β2n
s = e1 where r < s are both even. Suppose there is

an α such that

d∗(α) = φ− β =
(
0 · · · 0 e1 0 · · · 0 −e1 0 · · · 0

)
where the idempotent e1 is in the r-th and s-th positions. This α does not exist because
by considering for example at the position r,

e1 = (φ− β)(ε2n
r ) = d∗(α)(ε2n

r ), implies that

α(d(ε2n
r )) = aα(ε2n−1

r ) + (−1)2n−rqrα(ε2n−1
r )a+ (−q)2n−rbα(ε2n−1

r−1 ) + (−1)2nα(ε2n−1
r−1 )b.

There is no way to define α(ε2n−1
r ) and α(ε2n−1

r−1 ) so that equality hold in the above expres-
sion. Another way to look at this is that if d∗(α) = φ− β for some α, then α has to be a
non-nilpotent element of odd homological degree. But there are no non-nilpotents of odd
degree. Therefore there is no such α. Therefore each non-nilpotent n-cocycle constitutes
its own class in Zn(Λq,Λq).

We now define a canonical map from Z∗(Λq,Λq) =
⊕

n>0 Z
n(Λq,Λq) to the polynomial

ring in two indeterminates k[x, y]. We can recall from Lemma 4.7 that φn0 and φnn+1 are
never equal to e1 whenever φ is a non-nilpotent cocycle. We define this map by(

0 0 (e1)2 0 · · · 0
)
7→ x2(n−1)y2,(

0 0 0 0 (e1)4 0 · · · 0
)
7→ x2(n−2)y4,

...(
0 · · · 0 (e1)r 0 · · · 0

)
7→ x2n−ryr,

...(
0 0 · · · 0 (e1)2n 0

)
7→ y2n

This map is well defined as the kernel contains only the zero map. Under this map,
the image of Z∗(Λq,Λq) is the subalgebra k[x2, y2]y2 which is not finitely generated as

an algebra. This is because for each n, x2(n−1)y2 cannot be generated by lower degree
elements. Also note how the cup product corresponds with multiplication in k[x, y], that
is, given even positive integers r, s, we have

( 0 · · · 0 (e1)r 0 · · · 0 ) ` ( 0 · · · 0 (e1)s 0 · · · 0 )

��

// (x2n−ryr) · (x2m−sys)

��
( 0 · · · 0 (e1)r+s 0 · · · 0 ) // x2(n+m)−(r+s)yr+s
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and at each degree n, the element
(
0 0 e1 0 · · · 0

)
identified with x2(n−1)y2 cannot

be generated as a cup product of any two elements of lower homological degrees. Since
this map is 1-1, we conclude that Z∗(Λq,Λq) ∼= k[x2, y2]y2. The next proposition formalizes
this idea whereas the next example is an illustration.

Proposition 4.10. For q = ±1, Z∗(Λq,Λq) is graded with respect to the cup product and
is canonically isomorphic to the subalgebra k[x2, y2]y2 of k[x, y]. That is Z∗(Λq,Λq) ∼=
k[x2, y2]y2 where the degree of y2 is 2 and that of x2y2 is 4.

Example 4.11. To show that

x2y2 · y2 ∼= (0 0 e1 0 0 0) ` (0 0 e1 0)

= (0 0 0 0 e1 0 0 0) ∼= x2 · y4

Take φ = x2y2 ↔ (φ4
0 φ

4
1 φ

4
2 φ

4
3 φ

4
4 φ

4
5) and µ = y2 ↔ (φ2

0 φ
2
1 φ

2
2 φ

2
3).

(φ ` µ)(ε6
0) = φ4

0µ
2
0 = 0

(φ ` µ)(ε6
1) =

1∑
j=0

(−1)j(1+j)φ4
jµ

2
1−j = φ4

0µ
2
1 + φ4

1µ
2
0 = 0

(φ ` µ)(ε6
2) =

2∑
j=0

(−1)j
2
φ4
jµ

2
2−j = φ4

0µ
2
2 − φ4

1µ
2
1 + φ4

2µ
2
0 = 0

(φ ` µ)(ε6
3) =

3∑
j=1

(−1)j(−1+j)φ4
jµ

2
3−j = φ4

1µ
2
2 + φ4

2µ
2
1 + φ4

3µ
2
0 = 0

(φ ` µ)(ε6
4) =

4∑
j=2

(−1)j(−2+j)φ4
jµ

2
4−j = φ4

2µ
2
2 − φ4

3µ
2
1 + φ4

4φ
2
0 = e1

(φ ` µ)(ε6
5) =

4∑
j=3

(−1)j(−3+j)φ4
jµ

2
5−j = φ4

3µ
2
2 + φ4

4µ
2
1 = 0

(φ ` µ)(ε6
6) = φ4

4µ
2
4 = 0

(φ ` µ)(ε6
7) = φ4

0µ
2
3 = 0

Theorem 4.12. Let k (char(k) 6= 2) be a field and Λq = kQ/Iq be the family of quiver
algebras of (1.1). Let N be the set of homogeneous nilpotent elements of HH∗(Λq), then

HH∗(Λq)/N =

{
HH0(Λq)/N ∼= k, if q 6= ±1

Z0(Λq,Λq)⊕ k[x2, y2]y2 ∼= k ⊕ k[x2, y2]y2, if q = ±1

where the degree of y2 is 2, and that of x2y2 is 4.

Proof. If q 6= ±1, and n > 0, then all cocycles φ : Kn → Λq are nilpotent by Lemma 4.7.
From Remark 4.2, we have then that

HH∗(Λq)/N = HH0(Λq)/N ∼= Z0(Λq,Λq) ∼= k.

If q = ±1, then the only non-nilpotent elements are those of Corollary 4.9. From Re-
mark 4.2 and Proposition 4.10 we have that Hochschild cohomology ring modulo homo-
geneous nilpotent elements of {Λq}q=±1 is spanned by graded pieces of sets containing
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cocycles given by Corollary 4.9. That means that

HH∗(Λq)/N = Z0(Λq,Λq)⊕ Z∗(Λq,Λq)
∼= k ⊕

(⊕
n>0

spank

{
φ : K2n → Λq

∣∣ φ =
(
0 · · · 0 (e1)(r) 0 · · · 0

)
, r is even

})
= k ⊕ k[x2, y2]y2.

�

5. Gerstenhaber Ideal of Nilpotent Cocycles

We denote by N c, the set of homogeneous non-nilpotent elements of HH∗(Λq) given in
Corollary 4.9. In this section we compute the Gerstenhaber bracket of homogeneous non-
nilpotent cocycles [N c,N c] and show that it is zero. We also showed that for Λq, q = ±1,
the Gerstenhaber ideal of homogeneous nilpotent cocycles is the same as the set of ho-
mogeneous nilpotent cocycles N . We use the idea of homotopy lifting which we briefly
introduce to handle the Gerstenhaber bracket structure. We computed some examples of
homotopy lifting maps as well as the bracket of two nilpotent cocycles. We next sum-
marize the techniques from [12, 13] for computing Gerstenhaber brackets on Hochschild
cohomology.

Homotopy lifting: Let P µP−−→ A be a projective resolution of A as an Ae-module with
differential dP and augmentation map µP . We take d to be the differential on the Hom
complex HomΛe(P,P) defined for any degree n map g : P→ P[−n] as

d(g) := dP g − (−1)ngdP

where P[−n] is a shift in homological dimension with (P[−n])m = Pm−n. In the following
definition, the notation ∼ is used for two cocycles that are cohomologous, that is, they
differ by a coboundary.

Definition 5.1. Let ∆P be a chain map lifting the identity map on A ∼= A ⊗A A and
suppose that η ∈ HomAe(Pn, A) is a cocycle. A module homomorphism ψη : P → P[1− n]
is called a homotopy lifting map of η with respect to ∆P if

d(ψη) = (η ⊗ 1P − 1P ⊗ η)∆P and(5.2)

µPψη ∼ (−1)n−1ηψ

for some ψ : P→ P[1] for which d(ψ) = (µP ⊗ 1P − 1P ⊗ µP )∆P.

Remark 5.3. For Koszul algebras, the resolution K is furnished with the differential graded
coalgebra property i.e. (∆K ⊗ 1K)∆K = (1K ⊗ ∆K)∆K and (d ⊗ 1 + 1 ⊗ d)∆K = ∆Kd.
Furthermore, the augmentation map d0 = µ : K → Λ, which can be thought of as a
counit makes (µ ⊗ 1K)∆K − (1K ⊗ µ)∆K = 0. We can therefore take ψ = 0, so that we
have µψη ∼ 0. Next, we set ψη(Kn−1) = 0 and the second hypothesis of Definition 5.1 is
satisfied. We now give a theorem of Y. Volkov which is equivalent to the original definition
of the Gerstenhaber bracket on Hochschild cohomology [13].

Theorem 5.4. [12, Theorem 4] Let (P, µP ) be a Λe-projective resolution of Λ, and let
∆P : P −→ P ⊗Λ P be a diagonal map. Let η : Pn −→ Λ and θ : Pm −→ Λ represent some
cocycles. Suppose that ψη and ψθ are homotopy liftings for η and θ respectively. Then
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the Gerstenhaber bracket of the classes of η and θ can be represented by the class of the
element

[η, θ]∆P = ηψθ − (−1)(m−1)(n−1)θψη.

We present the following theorem describing homotopy lifting maps for non-nilpotent
cocycles. We follow up with a remark showing that Gerstenhaber bracket of any two
non-nilpotent cocycles is 0.

Theorem 5.5. Let k be a field and Λq = kQ/Iq, q = ±1. Suppose that η : Kn → Λ is a

non-nilpotent n cocycle i.e. η =
(
0 · · · 0 (e1)(r) 0 · · · 0

)
, where n and r are even.

The associated homotopy lifting map ψη : Km −→ Km−n+1 satisfies

d(ψη) = dψη − (−1)n−1ψηd = 0.

Proof. From Remark 3.9, the diagonal map ∆K on εms whenever 0 < s < m is given by

∆K(εms ) =
m∑
w=0

min{w,s}∑
j=max{0,s+w−m}

(−q)j(m−s+j−w)εwj ⊗ εm−ws−j . The right hand side of Equation

(5.2) is given by

(η ⊗ 1− 1⊗ η)∆K(εmr )

= (η ⊗ 1− 1⊗ η)
[ m∑
w=0

min{w,s}∑
j=max{0,s+w−m}

(−q)j(m−s+j−w)εwj ⊗ εm−ws−j

]
.

Since η is an n-cocycle, we consider only the case (η ⊗ 1)((−q)r(m−s+r−n)εnr ⊗ εm−ns−r ) that

is w = n, j = r and (1 ⊗ η)((−q)(s−r)(n−r)εm−ns−r ⊗ εnr ) that is m − w = n, s − j = r. The
last expression therefore becomes

(−q)r(m−s+r−n)η(εnr )εm−ns−r − (−1)n(m−n)(−q)(s−r)(n−r)εm−ns−r η(εnr )

= (−q)r(m−s+r−n)e1ε
m−n
s−r − (−1)n(m−n)(−q)(s−r)(n−r)εm−ns−r e1.

We recall that since s− r 6= m− n+ 1, o(fm−ns−r ) = t(fm−ns−r ) = e1. Therefore

e1ε
m−n
s−r = e1(0, · · · , 0, o(fm−ns−r )⊗k t(fm−ns−r ), 0, · · · , 0)

= (0, · · · , 0, e1o(f
m−n
s−r )⊗k t(fm−ns−r ), 0, · · · , 0)

= (0, · · · , 0, e2
1 ⊗k t(fm−ns−r ), 0, · · · , 0)

= (0, · · · , 0, e1 ⊗k t(fm−ns−r ), 0, · · · , 0)

= (0, · · · , 0, o(fm−ns−r )⊗k t(fm−ns−r ), 0, · · · , 0) = εm−ns−r

and εm−ns−r e1 = εm−ns−r . Therefore, Equation (5.2) becomes

(dψη − (−1)(n−1)ψηd)(εmr ) = (−q)r(m−s+r−n)εm−ns−r − (−1)n(m−n)(−q)(s−r)(n−r)εm−ns−r = 0.

since both n and r are even and q = ±1. �

Remark 5.6. We recall from Remark 5.3 that for Koszul algebras, we can take the first
homotopy lifting map (ψη)n−1 : Kn−1 −→ K0 to be the zero map. From the result of
Theorem 5.5, d(ψη)n = (−1)n−1(ψη)n−1d = 0, so we see that we can define all homotopy
lifting maps ψη = 0 for all n. This means that if η and η̄ are two non-nilpotent cocycles
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their Gerstenhaber bracket [η, η̄] = ηψη̄+ η̄ψη = 0. Refer to [8] on the general Gerstenhaber
algebra structure of Koszul algebras defined by quivers and relations.

Definition 5.7. Lie subalgebras.

(1) Let (g, [·, ·]g) be a Lie algebra. A subspace a of g is said to be a Lie subalgebra if it
is closed under the Lie bracket that is [x, y]g ∈ a for all x, y ∈ a.

(2) The subalgebra a is an ideal of g if [x, z]g ∈ a for all x ∈ a, z ∈ g.

Definition 5.8. Gerstenhaber ideal: Let S ⊂ (HH∗(Λq),`, [·, ·]) be a subset of homoge-
neous elements. The weak Gerstenhaber ideal generated by S is the smallest homogeneous
ideal G(S) containing S such that [γ, γ′] ∈ G(S) for all γ, γ′ ∈ G(S) and γ ` φ ∈ G(S)
for all φ ∈ HH∗(Λq). It is a (strong) Gerstenhaber ideal generated by S if in addition
[γ, φ] ∈ G(S) for all φ ∈ HH∗(Λq).

The next result shows that for Λq, q = ±1, Hochschild cohomology modulo the weak
Gerstenhaber ideal generated by homogeneous nilpotent elements is not finitely generated
thus providing an answer to a question of R. Hermann in [6, Question 9.8].

Theorem 5.9. Let k be a field and Λq, q = ±1 be members of the family of quiver algebras
of (1.1). Let N be the set of homogeneous nilpotent elements of HH∗(Λq), and G(N ) the
weak Gerstenhaber ideal generated by N . Then HH∗(Λq)/G(N ) ∼= HH∗(Λq)/N .

Proof. We will show that G(N ) = N for Λ±1. Let χ be a nilpotent n-cocycle and θ a
nilpotent m-cocycle. We now consider

[χ, θ](εm+n−1
r ) = χψθ(ε

m+n−1
r )− (−1)(m−1)(n−1)θψη(ε

m+n−1
r ).

The homotopy lifting map ψθ : Km−n+1 −→ Kn is a Λe-module homomorphism, and would
therefore take a basis element εm+n−1

r a Λeq-linear combination of basis elements. These

combinations can take any of the following form: εns , f
1
i ε
n
s , ε

n
s f

1
j , f

1
i ε
n
s f

1
j , f

2
i ε
n
s , ε

n
s f

2
j or

f2
i ε
n
s f

2
j for some s, i, j. Since χ is nilpotent, by Corollary 4.9, χψθ(ε

m+n−1
s ) 6= e1 for

any s. Applying the same reasoning, it is obvious that θψχ(εm+n−1
s ) 6= e1 either. This

implies that [χ, θ] is nilpotent. Since the choice of χ and θ were arbitrary, we conclude in
this case that [N ,N ] ⊆ N . Now suppose that θ =

(
0 · · · 0 (w)s 0 · · · 0

)
, that is

θ(εms ) = w 6= e1 for some w ∈ Λq whose terminal vertex is e1 and φ is an n-cocycle defined
by φ =

(
0 · · · 0 (e1)r 0 · · · 0

)
, we have seen from Theorem 3.8 and Lemma 4.7

that (θ ` φ)(εm+n
i ) = 0 or

(θ ` φ)(εm+n
i ) =

min{m,i}∑
j=max{0,i−n}

(−q)j(n−i+j)θ(εmj )φ(εni−j) = (−q)j(n−i+j)we1 6= e1

whenever j = s and i−j = r. This means that (θ ` φ) is nilpotent for any φ. Therefore N
is an ideal with respect to the cup product. The weak Gerstenhaber ideal of N is therefore
N . We want to point out that G(N ) is not a (strong) Gerstenhaber ideal because the
bracket of a nilpotent and a non-nilpotent cocycle can yield a non-nilpotent cocycle. �

Some bracket computations: We now calculate the bracket for some nilpotent co-
cycles. We refer to [8, Examples section] for more examples of homotopy lifting maps
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for quiver algebras and [9] for more examples of homotopy lifting maps for twisted tensor
product algebras. Consider the nilpotent 2-cocycle χ and the nilpotent 1-cocycle θ:

χ =
(
a 0 0 0

)
, θ =

(
a 0 0

)
Calculations show that the first three homotopy lifting maps χi : Ki −→ Ki−1, θj : Kj −→

Kj , i, j = 1, 2, 3 associated to χ and θ are given by

χ1(ε1
0) = 0, θ1(ε1

0) = ε1
0 χ2(ε2

0) = ε1
0, θ2(ε2

0) = 2ε2
0 χ3(ε3

0) = 0, θ3(ε3
0) = 3ε3

0

χ1(ε1
1) = 0, θ1(ε1

1) = 0 χ2(ε2
1) = 0, θ2(ε2

1) = ε2
1 χ3(ε3

1) = ε2
1, θ3(ε3

1) = 2ε3
1

χ1(ε1
2) = 0, θ1(ε1

2) = 2ε1
2 χ2(ε2

2) = 0, θ2(ε2
2) = 0 χ3(ε3

2) = 0, θ3(ε3
2) = 1ε3

2

χ2(ε2
3) = 0 χ3(ε3

3) = 0, θ2(ε2
2) = 0

χ3(ε3
4) = ε2

3, θ3(ε3
4) = 4ε3

4.

These maps satisfy Equation (5.2). We verify Equation (5.2) for χ only as follows:

(d2χ3 + χ2d3)(ε3
0) = d2(0) + χ2(aε2

0 − ε2
0a) = aε1

0 − ε1
0a

(d2χ3 + χ2d3)(ε3
1) = d2(ε2

1) + χ2(aε2
1 + qε2

1a+ q2bε2
0 − ε2

0b) = aε1
1 − ε1

1a

(d2χ3 + χ2d3)(ε3
2) = d2(0) + χ2(aε2

2 + q2ε2
2a− qbε2

1 − ε2
1b) = 0

(d2χ3 + χ2d3)(ε3
3) = d2(0) + χ2(bε2

2 − ε2
2b) = 0

(d2χ3 + χ2d3)(ε3
4) = d2(ε2

3) + χ2(aε2
3 − ε2

0c) = aε1
2

On the other hand, using Koszul signs and (1⊗ χ)(εnr ⊗ εms ) = (−1)|χ|nεnrχ(εms ), we get

(χ⊗ 1− 1⊗ χ)∆K(ε3
0) = (χ⊗ 1− 1⊗ χ)

[
ε0

0 ⊗ ε3
0 + ε1

0 ⊗ ε2
0 + ε2

0 ⊗ ε1
0 + ε3

0 ⊗ ε0
0

]
= aε1

0 − ε1
0a,

(χ⊗ 1− 1⊗ χ)∆K(ε3
0) = (χ⊗ 1− 1⊗ χ)

[
ε0

0 ⊗ ε3
1 + ε1

0 ⊗ ε2
1 + q2ε1

1 ⊗ ε2
0 + ε2

0 ⊗ ε1
1

− qε2
1 ⊗ ε1

0 + ε3
1 ⊗ ε0

0

]
= aε1

1 − q2ε1
1a,

(χ⊗ 1− 1⊗ χ)∆K(ε3
0) = (χ⊗ 1− 1⊗ χ)

[
ε0

0 ⊗ ε3
2 + ε1

0 ⊗ ε2
2 + qε1

1 ⊗ ε2
1 − ε2

1 ⊗ ε1
1

+ ε2
2 ⊗ ε1

0 + ε3
2 ⊗ ε0

0

]
= 0,

(χ⊗ 1− 1⊗ χ)∆K(ε3
0) = (χ⊗ 1− 1⊗ χ)

[
ε0

0 ⊗ ε3
3 + ε1

1 ⊗ ε2
2 + ε2

2 ⊗ ε1
1 + ε3

3 ⊗ ε0
0

]
= 0,

(χ⊗ 1− 1⊗ χ)∆K(ε3
0) = (χ⊗ 1− 1⊗ χ)

[
ε0

0 ⊗ ε3
4 + ε1

0 ⊗ ε2
3 + ε2

0 ⊗ ε1
2 + ε3

4 ⊗ ε0
0

]
= aε1

2.

So we see that (d2χ3 + χ2d3)(ε3
i ) = (χ ⊗ 1 − 1 ⊗ χ)∆K(ε3

i ), i = 0, 1, 2, 3, 4. It is easy to
verify as well that [χ, θ] = χ that is

[χ, θ](ε2
0) = χθ2(ε2

0)− θχ2(ε2
0) = χ(2ε2

0)− θ(ε1
0) = 2a− a = a

[χ, θ](ε2
i ) = χθ2(ε2

i )− θχ2(ε2
i ) = 0, for i = 1, 2, 3.
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